
 QEX November/December 2015 1

Elwood Downey, WBØOEW

8274 N Sunset Ranch Loop, Tucson, AZ, 85743-8201: ecdowney@ClearSkyInstitute.com

Autonomous Satellite Tracker
This two-axis tracker needs no prior alignment with respect to the Earth’s

surface, and tracks satellites with high accuracy entirely by reference to
built-in spatial sensors.

1Notes appear on page 00

This paper describes a completely
autonomous Earth satellite tracking mount.
In conjunction with a 9-DOF (degrees of
freedom) sensor attached to the antenna
boom and a GPS receiver, the 2-axis gimbal
will track any Earth satellite within 2 degrees
in real time without any orientation setup
calibration of any kind. The Tracker system
includes a built-in web server and Wi‑Fi
access point, which allows all monitoring,
command and TLE upload from any
web browser including smart phone. All
components are off-the-shelf so no custom
electronics, machining or other skills are
required except that needed to attach an
antenna boom to a flat plate. All electronics
can be powered from a single dc supply from
7 to 18 V such as a LiPo battery pack or solar
charging system. As of the time of writing,
total cost of the electronics and gimbal is
approximately $350, not including antenna.

Introduction
Observers have been tracking Earth

satellites with gimbal mounts since the
beginning of the space age.1 One of the
challenges has always been to align these
mounts so the theoretical calculations of
satellite azimuth and elevation could be
transformed to the mount coordinate system.
After reading about the availability of low
cost MEMS devices that directly measure
spatial orientation, I wanted to build a mount
that avoided the tedious calibration step by
measuring directly the pointing direction of
the payload.2

Going one step further, I also wanted
to eliminate the need to have any prior

knowledge of — or make assumptions about
— the gimbal geometry, axis orthogonality,
motor assignment and axis rotation angles.
Doing so would simplify the mechanical
requirements of the gimbal and wiring, and
allow the use of simple off-the-shelf hobby
servo motors and robot hardware for use with
light weight antennas.

The final goal was the ability to control
and monitor the entire system from my
smart phone without needing to first install
an app. The most flexible way to accomplish
this is by providing a web server, so I
needed enough memory in the controller to
accomplish this.

Achieving the Goals
The first goal is achieved by measuring

the spatial orientation of the antenna directly
using a combination of 3D magnetic,
accelerometer and gyroscope sensors. When
packaged together, these devices are referred
to as having 9 Degrees-of-Freedom, or
simply 9-DOF sensors. The magnetic sensor
provides the direction of the local magnetic
field, including tilt. This is combined with
knowledge of the local vertical gravity
vector from the accelerometer to produce
local elevation and azimuth with respect to
magnetic north. To get a bearing from true
north, the latitude and longitude from the
GPS is combined with the World Magnetic
Model to compute the local magnetic
declination correction factor.3 Information
from the gyroscope provides additional
stability and repeatability information. The
final correction is to apply a simple model
for atmospheric refraction to elevation based
on nominal assumptions for air temperature
and pressure. Although these too could be

measured quite easily, the maximum effect at
the horizon is about one-half degree, which
I decided was not worth refining further.
Taken together, these measurements provide
an absolute measure of antenna direction in
the local horizon coordinate system, which
is exactly what is produced by the orbit
propagator.

Now that we have the measured antenna
direction and a computed predicted direction
from the propagator in the same coordinate
system, the second goal is to drive the
gimbal motors in such as way as to reduce
any difference between the two. Normally
this is done in closed-form by using a
transformation matrix determined ahead of
time that relates the gimbal axis coordinates
to the local horizon coordinates. In order
to eliminate the need for determining this
matrix, my second goal is achieved by
moving the motors by a small amount and
just measuring whether the error increases
or decreases. This is known as a gradient
descent search.4

My first attempt at an error metric was
to use the great circle distance between the
measured and computed positions. However,
this leads to a condition known as gimbal
lock if the gimbal ends up pointing near
the zenith, either intentionally because the
satellite pass was high or zenith was reached
unintentionally during the search procedure.5
This is avoided if the errors in azimuth and
elevation are measured separately.

The final tracking algorithm can be sum-
marized as follows:
Step 1 – choose one axis motor at random
Step 2 – measure error in azimuth and eleva-
tion separately
Step 3 – move the current motor a small
amount and stop

2 QEX November/December 2015

Step 4 – measure the two errors again
Step 5 – if either error increased, reverse the
last move and start using the other motor
Step 6 – go to Step 3, repeating forever.

Note that this does not require any
knowledge of the gimbal orientation or even
what motor operates what axis. The effect is
the antenna will make a few small random
moves to get started, then one motor will
march along steadily until it causes one or
the other error measures to increase. Then
the other motor will do the same and the
process repeats until the antenna is pointing
at the satellite. This process repeats forever.
So, as the satellite moves, the errors creep up
and the algorithm keeps working to reduce
them. The smoothness of the motion depends
on the time between moves and the angle
commanded for each move. These are not
critical during a large slew but some care is
needed in order to maintain smooth tracking
performance. A rigorous approach is not
required. It is easy to set reasonable values
using trial and error. The algorithm could be
made more efficient by introducing control-
loop equations for proportional gain, so large
errors are reduced more quickly, and integral
gain to maintain closer tracking tolerances,
but in practice these refinements are not
really necessary.

The Web Server
The web server turned out to be straight

forward. I already know Javascript, HTML
and the HTTP headers that are used between
browser and server so I wrote my own server
state machine from scratch on top of the
basic Arduino Ethernet library. The main
page is sent, in effect, as the default index.
html for the server URL address. All state
variables are updated and reported using a
consistent NAME=VALUE syntax, where
the NAME usually matches the HTML
name of the corresponding DOM display
element. Setting a new value is performed
with a POST command and retrieving values
is done by asking for getvalues.html. An
XMLHttpRequest polls for values to keep
the web page updated. More details about
using the web interface are provided later.

Implementation Decisions
Figure 1 shows the Tracker gimbal

attached to a tripod and supporting an
Elk 2 m/70 cm LPDA antenna. Figure
2 shows the inside view of the Tracker
electronics box. Figure 3 is a block diagram
showing how each electronic subsystem
interconnects. Table 1 shows the major bill
of materials.

Next, I elaborate the role of each
component and share my experiences that

Figure 1 — Tracker gimbal is attached to a tripod and supports an Elk 2m/70cm LPDA antenna.

Figure 2 — Inside view of the Tracker electronics box.

 QEX November/December 2015 3

Table 1
Bill of Materials

Item	 Source	 Approximate price
Ardunio Mega 2560	 Amazon: SunFounder Mega 2560 R3, stock number B00D9NA4CY	 $18
Wired Ethernet shield	 Amazon: SunFounder Ethernet Shield W5100 for Arduino, stock number B00HG82V1A	 $16
Wi‑Fi router	 Amazon: TP-LINK TL-WR702N Wireless N150 Travel Router, stock number B007PTCFFW	 $20
GPS module	 Adafruit: Part ID 746	 $40
Servo controller	 Adafruit: Part ID 815	 $15
Bosch 9 DOF sensor	 Adafruit: Part ID 2472	 $35
Pan platform	 ServoCity: model SPG785A-CM, 5:1 ratio	 $100
Tilt stage	 ServoCity: model SPT400, 5:1 ratio	 $95

	 Total	 $339

Figure 3 — Block diagram showing how each electronic subsystem interconnects. A partial bill of materials is in Table 1.

QX1603-Downey03

Antenna

USB

SCLK

MISO

MOSI

SS^

SDA

SCL

Arduino Mega

13.8 VDC

RX

TX

USB

GPS

Wired Ethernet WiFi

Antenna

LiPo Charger LiPo Pack
Power 1

5 VDC

SPI CAT5

I2C

Power 2

6 VDC

9 DOF
Sensor

Servo
Controller

Pan Servo

Tilt Servo

4 QEX November/December 2015

lead to each choice. The main processor is
the Arduino Mega 2560. I began with the
model Uno but eventually I could no longer
squeeze everything into its 32 KB flash
memory and 4 KB RAM storage. The Mega
has 8 times as much flash memory and twice
as much RAM, which is plenty. The Tracker
uses about half of the Flash on the Arduino
Mega for code and constant strings, and
about half of the RAM for mutable variables,
leaving 4 KB of RAM for stack.

To control the two hobby servo motors
I initially used the Adafruit software servo
library. However, the servos did not move
smoothly. The cause turned out to be
interference to the pulse timing by other
libraries that lock out interrupts, even briefly.
Servo position is directly related to pulse
duration, which is sensitive to changes on the
order of a few microseconds, so it doesn’t
take much timing change to cause unwanted
motion. The solution My solution was the 12
channel servo controller from Adafruit. This
offloads all the timing from the Arduino and

requires only a two-wire connection using
the I2C bus to issue the desired pulse length
for each channel. It also has the added benefit
that the servos actively hold position until a
new command is issued.

I chose the Bosch BNO055 9-DOF sensor.
It is available on a convenient breakout board
from Adafruit and is compatible with their
Sensors library. The advantage of this sensor
package is it includes an onboard processor
that performs all the consolidation of the
three sensors automatically and outputs
directly its absolute spatial orientation as
Euler angles interpreted here as azimuth,
elevation and roll.6 As anyone who has
tried to manually fuse together these types
of sensors knows, this saves quite a lot
of tedious mathematics. This sensor also
connects to the Arduino using the same
I2C bus as the servo controller but does not
interfere because they each have a separate
bus address.

I chose the GPS module from Adafruit.
It has a built in antenna, which works pretty

well, but I also allowed for the connection
of an external antenna if necessary. This
module communicates with the Arduino
using a UART, or serial connection. This
revealed an additional advantage to using
the Arduino Mega: it has four hardware
serial ports available, allowing one to be
dedicated to the GPS. The Uno only has
one that already serves duty with the USB
boot loader. A software serial library could
be used with the Uno to use other pins but at
the expense of higher overhead and a more
limited bandwidth.

I wanted Wi‑Fi ability so I could control
the system from my smart phone. I tried
several Wi‑Fi modules and shields but found
none to be reliable. Even the best one from
Adafruit would work for a random time,
anywhere from seconds to hours, and then
just mysteriously stop. In stark contrast, all
models I tried of wired Ethernet proved to
be 100% reliable, even including the oldest
modules that use the WizNet W5100, so
I ended up using a generic version made

Figure 4 — The azimuth gimbal mounted on a tripod.

 QEX November/December 2015 5

by Sunfounder. In order to accomplish my
goal for Wi‑Fi, I just connected the wired
Ethernet directly to a $20 Wi‑Fi adaptor
made by TP-Link. This combination works
beautifully. I have not experienced a single
wireless communication glitch. The adaptor
I bought can be configured either as its
own Access Point to broadcast a separate
Wi‑Fi network just for the Tracker, or it
can transparently bridge the Arduino to an
existing Wi‑Fi network. The unit comes
with a simple Windows utility to perform
the required one-time setup. From then on it
comes up on its own every time.

I wanted everything to operate from one
self-contained power source. I ended up
using one LiPo battery and two separate
power conditioning modules. One supplies
5 V to the Arduino and its peripherals, and
the other is dedicated to powering the servo
motors. This approach provides clean power
to the electronics and isolates the wide load
swings and voltage spikes that occur from
the motors. I currently use a 7.4 V 2000 mAh
pack, which operates the Tracker for several
days of moderate use before needing a
recharge. If desired, a solar pack could also
easily be used.

The gimbal is one channel-mount pan
platform (Figure 4) and one tilt platform
(Figure 5) obtained from ServoCity.com.
Together these provide about 400 degrees
of azimuth motion and 135 degrees of
elevation motion. Under the pan platform I
installed a short section of channel with ¼‑20
threaded screw plates for easy attachment to
a common camera tripod. The pan platform
has a hollow shaft that simplifies cabling to
the 9-DOF sensor and tilt motor, and reduces
tangles during rotations. I discovered that
the servos would make spontaneous and
sporadic moves while I am transmitting
on 2 m FM with the Elk LPDA antenna. I
eliminated this interference by using shielded
STP CAT5 cable, taking care that only the
end of the shield nearest the Arduino was
connected to ground.

Assuming the Bosch spatial sensor is
accurately aligned with the antenna, the
largest contribution to pointing error is the
sensor itself, which claims a maximum
magnetic heading error of ±2.5 degrees.
The next largest source of error is the orbit
propagator software. The code, available
in the QEX files web page, used here is
based on a very clean rendering by Mark
VandeWettering, K6HX, of the James
Miller, G3RUH, PLAN-13 code.7,8,9 After the
updates to the solar elements posted in 2014
the code produces topo-centric values within
0.2 degrees compared to a more rigorous
SGP4 code within a few days of the TLE
epoch.10

Figure 5 — The elevation gimbal shown with antenna attached.

Installation
In a nut shell, assemble the electronics

and the gimbal. Attach them to your support
then attach your antenna and the Bosch
sensor. Attach your antenna to the tilt
platform so it points straight up when the tilt
platform is run all the way over on its side
such that the plane of the tilt platform is also
vertical. I attached my Elk LPDA antenna
using two U-bolts after drilling four holes in
the tilt plate. Position your antenna of choice
on the tilt plate so the antenna is roughly
balanced to help reduce the load on the tilt
servo. There’s plenty of torque so it should
be fine to add a rear counter-weight to the
boom if it allows you to balance the antenna
better. Be aware that when the target is near
zenith, the antenna will extend below the
level of the gimbal. If you are using a tripod,
add a vertical extension, otherwise when the
antenna is pointed near zenith it will hit the
tripod legs.

Attach the Bosch sensor breakout board
such that:
 – (1) the short dimension is parallel to the
antenna boom,
 – (2) the populated side of the board faces
upwards and

 – (3) the side with the control signals (SDA,
SCL etc.) points in the rear direction of the
antenna pattern.

Take some care to make this accurate and
secure because the overall pointing accuracy
is entirely dependent on how parallel the
sensor is to the antenna bore site. The
position along the boom does not matter,
but since one of the sensors is measuring
magnetic fields, mount it as far as possible
from anything containing iron such as screws
or U-bolts. It is not effected nearly as much
by aluminum, but I would still stay at least an
inch away from aluminum as well.

Power up the Tracker controller. Either
connect with Wi‑Fi or attach a CAT5 cable to
the wired Ethernet controller. The default IP
address is 192.168.0.122. If your computer
is on the same network you can surf to that
address and immediately see the main web
page. If you want to change the IP of the
Tracker, you have two choices. One choice
is to edit the source code file Webpage.cpp
(on the QEXfiles web page) and load a new
image into the Ardunio. The other choice
is to temporarily change your computer
network to 192.168.0.0 so you can surf as
above, then use the Tracker web page itself to

6 QEX November/December 2015

set a different IP address, reboot the Arduino
then change your computer network back to
your desired setting.

Once your web page is accessible, use the
Gimbal section at the bottom to experiment
with the motion range of each axis. There
is no predefined assignment of which servo
axis is azimuth or elevation. When setting
the minimum and maximum for the elevation
servo, make sure to consider the full range
of azimuth. The minimum and maximum
values are stored in EEPROM so they will
retain their values through a power cycle.

Web Page Description
Turn on the Tracker controller and surf to

its network address with your browser. You
should see the web page shown in Figure
6. The page has two parts. The top part
allows setting and inspecting the Two-Line
Elements (TLEs) used to define the motion
of the satellite of interest. The bottom part
is a table showing detailed information for
each of the Tracker subsystems of Target,

GPS, Sensor and Gimbal. Look through
the table carefully because it provides a lot
of information and control capability. Most
fields are self explanatory.

You will note that some of the data fields
can be overwritten. This effectively turns off
the automatic setting and allows you to enter
your own values. Suggestions for how these
can be used will be mentioned below.

Web Page in Detail
Across the very top is the title. Hovering

over this title for a moment will display the
software version. To the left is the network
IP address of the Tracker. If this value is
edited and Set, a new value will be stored in
EEPROM and will be used the next time the
Tracker is powered up or rebooted. To the
right is a button to Reboot Arduino, mainly for
this purpose. Below the title is the message
line. Look here for confirmations, additional
information and general messages as you use
the page.

Aside from this bit of housekeeping, the
top portion of the page mainly allows you to

enter and Upload the TLE (two-line elements)
for the satellite you wish to track. There are
two text areas for showing TLEs. The top-
most text area, with the darker background,
is read-only and displays the TLE currently
loaded into the Tracker, if any. The text area
just beneath, with the white background, is
writable. Here you can either copy/paste a
TLE directly or you can type in the name of
a satellite in the field provided and select a
file that contains its TLE. The Tracker will
scan through the entire file for a name match.
The name is not case sensitive. The Tracker
expects the file format to have the name
on the line just before the TLE in typical
fashion. If the satellite is found with a valid
TLE, it will appear in the white text area. At
this point the TLE is still just in your browser.
To actually send it to the Tracker, click
Upload. After successfully uploading a valid
TLE, it will appear in the darker text area.
This is the TLE that the Tracker will follow.
You can change, or erase the writeable text
area all you want and it won’t matter unless
you Upload it again.

Figure 6 — The Autonomous Satellite Tracker web interface. Not the satellite track projection in the inset on the upper right.

 QEX November/December 2015 7

Monitor and Control
Below the TLE section is the main table

for monitor and control. The first table
section is for the Target to be tracked. In the
left column you will see observing details
of the uploaded satellite elements at the
time and location shown in the GPS section
farther down. In the right column you will
see information about the next pass. Note
that the Tracker never computes information
in the past, so if a pass is already underway
(the satellite is currently above the horizon)
then the Next Rise information will be for
the subsequent complete pass, since that
event has already occurred for a pass that is
underway. You can override the computed
azimuth and elevation. If tracking is enabled,
this allows you to point your antenna at any
desired fixed sky location.

Beside the table (or below if your screen
is narrow) is an all-sky graph that shows the
pass as it will look overhead. Again, if you
override the time, and jump into the middle
of a pass in progress, only the path from that
moment onward will be drawn.

The Spatial Sensor
Below the Target Down section of the

table is the section for the Spatial sensor.
This displays the azimuth and elevation that
it is measuring and reporting to the Tracker. It
also displays the current temperature and the
status of the system processor and each of the
individual sensors. These individual status
values can range from 0 through 3, where 3
is the best. The Tracker will not use the data
unless all system status values report at least
1. Procedures for calibrating each sensor are
provided in the Bosch manual.11 The sensor
package will need to be moved around to
different orientations to get all sensors at their
best values. Use the pulse length override
fields in the Gimbal section (see below) to
perform these motions. Once all sensors
report state 3, their associated internal
calibration data can be stored to EEPROM
by clicking the Save Cal button. Once saved,
these values will be restored each time the
Tracker is powered up, and all sensors will
usually immediately come up in state value
3. This button is available only when all
sensors report status 3. The magnetic sensor

is very sensitive to local magnetic fields and
iron objects, so if you relocate the Tracker, I
recommend that you perform the calibration
again and store a new set of values.

GPS
The GPS section shows the reported

time and location, and also displays some
quality metrics. HDOP is the Horizontal
Dilution of Precision.12 This is an indication
of the accuracy of the latitude and longitude,
the position values most important to the
Tracker. HDOP values range from less than
1, which indicates ideal conditions, up to
20 or more, indicating that location can be
incorrect by 300 m or more. The number of
satellites used in the fix is reported, where
four or more is desirable. If you don’t have
a GPS connected, or it does not have lock,
or you just want to experiment, you can
override the time, date, latitude, longitude
and altitude to see the effect on the passes.
You don’t need a GPS at all if you enter these
data carefully.

Gimbal
At the bottom of the table is the Gimbal

section. These data are in units of raw pulse
duration. If you are aware of how hobby
servo motors function, you will recall they
are commanded to a given rotation angle
determined by the length of a pulse issued
on their control line. Pulse durations vary
by manufacturer and even among devices
of the same model. Roughly speaking, pulse
lengths range from about 500 ms for one
position extreme up to around 2400 ms for the
other extreme. Normally pulse durations are
set by the tracking algorithm, and bounded
by the indicated minimum and maximum
limit values. You can directly set specific
pulse durations for each motor if you wish.
Doing so will automatically disable tracking
if it is enabled. This is fun, but also important
to determine the safe as-built motion limits of
each axis. The limits are stored in EEPROM
and used by the Tracker to avoid exceeding
the limits of each servo motor.

The Gimbal section also allows you to
tune each axis for best tracking performance.
Recall from the tracking algorithm that a
motor is moved a small amount, stops to

allow a stable sensor reading, then moves
again repeatedly to track the target. Fields
are provided for you to set the stop period
and the step size for each move. The stop
period should be set to just long enough for
the entire gimbal and antenna to stop shaking
after a move. The step size should be set to
the smallest value that results in a reliable
change in reported sensor position.

Operation
After everything is set up and you are

comfortable with the safe operation of the
Tracker motions, you are ready to track a
satellite. Set the system up in a location with
a good view of the sky. Turn it on, load the
TLE into the white text area and click Upload.
Click Start Tracking to begin tracking the
satellite. That’s all there is to it. Enjoy.

All photos courtesy of the author.

Elwood Downey, WBØOEW, has held the
same call sign since he was first licensed
in 1974. He is an ARRL Member. Elwood
enjoys software, digital modes, antennas, and
experimenting. He graduated with a BSEE cum
laude in 1977 from Purdue University. Since
then he has focused his career on telescope
control systems and related astronomical
instrumentation, which he finds very fulfilling.
His career has taken him to many of the great
observatories around the world.

Notes
1siarchives.si.edu/collections/siris_

sic_8335.
2https://en.wikipedia.org/wiki/

Microelectromechanical_systems.
3https://www.ngdc.noaa.gov/geomag/

WMM/DoDWMM.shtml.
4https://en.wikipedia.org/wiki/Gradient_

descent.
5https://en.wikipedia.org/wiki/Gimbal_lock.
6https://en.wikipedia.org/wiki/Euler_angles.
7https://github.com/brainwagon/angst.
8www.amsat.org/amsat/articles/g3ruh/111.

html.
9www.arrl.org/QEXfiles.
10www.xephem.com.
11https://www.bosch-sensortec.com/en/

homepage/products_3/9_axis_sen-
sors_5/ecompass_2/bno055_3/bno055_4.

12https://en.wikipedia.org/wiki/Dilution_of_
precision_(GPS)Figure Captions.

